Stability of Plane Wave Solutions in Complex Ginzburg-Landau Equation with Delayed Feedback

نویسندگان

  • Dmitry Puzyrev
  • Serhiy Yanchuk
  • A. G. Vladimirov
  • S. V. Gurevich
چکیده

We perform bifurcation analysis of plane wave solutions in a one-dimensional complex cubic-quintic Ginzburg–Landau equation with delayed feedback. Our study reveals how multistability and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values of the delay, bifurcation diagrams are obtained by a combination of analytical and numerical methods. For large delays, using an asymptotic approach we classify plane wave solutions into strongly unstable, weakly unstable, and stable. The results of analytical bifurcation analysis are in agreement with those obtained by direct numerical integration of the model equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Feedback Control of Traveling Wave Solutions of the Complex Ginzburg Landau Equation

Through a linear stability analysis, we investigate the effectiveness of a noninvasive feedback control scheme aimed at stabilizing traveling wave solutions Re of the one-dimensional complex Ginzburg Landau equation (CGLE) in the Benjamin-Feir unstable regime. The feedback control is a generalization of the timedelay method of Pyragas [1], which was proposed by Lu, Yu and Harrison [2] in the se...

متن کامل

Spatial and temporal feedback control of traveling wave solutions of the two-dimensional complex Ginzburg–Landau equation

Previous work has shown that Benjamin–Feir unstable traveling waves of the complex Ginzburg–Landau equation (CGLE) in two spatial dimensions cannot be stabilized using a particular time-delayed feedback control mechanism known as ‘timedelay autosynchronisation’. In this paper, we show that the addition of similar spatial feedback terms can be used to stabilize such waves. This type of feedback ...

متن کامل

Stationary modulated-amplitude waves in the 1-D complex Ginzburg-Landau equation

We reformulate the one-dimensional complex Ginzburg-Landau equation as a fourth order ordinary differential equation in order to find stationary spatiallyperiodic solutions. Using this formalism, we prove the existence and stability of stationary modulated-amplitude wave solutions. Approximate analytic expressions and a comparison with numerics are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014